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1. Introduction

Despite significant progress in computational sciences, challenges persist in
the accurate numerical simulation of a broad spectrum of dynamic, multi-
physics phenomena relevant to aerospace systems. These challenging areas
include the direct and large-eddy simulation of turbulence, aeroacoustics,
fluid /structure interactions, electromagnetics, and magneto-gasdynamics.
In order to reduce the severe computational requirements of standard low-
order schemes, higher-order formulations, as well as massively parallel ap-
proaches are being actively pursued. Due to their spectral-like resolution
and ease of extension to multiple disciplines, high-order compact schemes[1]
represent an attractive choice for reducing dispersion, anisotropy and dis-
sipation errors associated with spatial discretizations. Until recently, these
schemes have mostly been used in conjunction with explicit time-integration
methods to address complex flow physics on simple Cartesian geometries.

Recent work performed at the Air Force Research Laboratory [2, 3, 4,
5, 6, 7] has extended the use of compact algorithms to more practical ap-
plications. This has been achieved through the development and improved
treatment of the various critical elements comprising the overall numerical
approach. Particular attention has been focused on enhanced high-order
(up to 10th-order) low-pass filtering techniques, accurate and robust near-
boundary formulations, proper metric evaluation, multi-domain implemen-
tation strategies, and sub-iterative implicit time-advancement methods. As
an outcome of this sustained effort, the highly accurate compact algorithm
has been successfully applied to efficiently solve a range of multi-physics
phenomena described by the Euler, Navier-Stokes and MHD equations on
3-D curvilinear and dynamic grids using either explicit or implicit time
integration approaches.
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These high-fidelity computational tools are currently being transitioned
to the multidisciplinary simulation of complex phenomena relevant to Air
Force systems, including: weapon-bay cavity acoustics, hypersonic flow con-
trol, high- angle-of-attack aerodynamics, and non-linear aeroelastic response.
A brief description of the governing equations, the various elements of the
numerical approach, as well as a few representative applications are in-
cluded in this paper.

2. Governing Equations

In order to develop a procedure suitable for nonlinear fluid dynamic, aeroa-
coustic and aeroelastic applications over complex configurations, the full
Navier-Stokes equations are selected and are cast in strong conservative
form introducing a general time-dependent curvilinear coordinate trans-
formation (z,y, z,t}) — (£,1,{, 7). In vector notation, and employing non-
dimensional variables, these equations are:
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where U = {p, pu, pv, pw, pE} denotes the solution vector, F, é, H , Fv, év,
H, are the fluxes, S denotes a source term, and J = 9 (§,7,¢,7) /0 (z,y, 2,t)
is the transformation Jacobian which for dynamic meshes is a function of
time.

3. Numerical Method
3.1. SPATIAL DISCRETIZATION

A finite-difference approach is employed to discretize the governing equa-
tions. This choice is motivated by the relative ease of formal extension to
higher-order accuracy. For any scalar quantity, ¢, such as a metric, flux
component or flow variable, the spatial derivative ¢' is obtained in the
transformed plane by solving the tridiagonal system:

F(ﬁé_l + ¢: + 1—1¢2+1 — b¢z+2 1 ¢z—2 + a¢z+1 5 ¢z—1 (2)
where I', a and b determine the spatial properties of the algorithm. The for-
mula yields the compact five-point, sixth-order C6, and three-point fourth-
order Cf schemes [1] with I' = 1/3, ¢ = 14/9, b = 1/9 and ' = 1/4,
a = 3/2, b = 0 respectively. Equation (2) also incorporates the standard
explicit fourth-order (E4) and second-order (£2) approaches for which the
coefficients are (' =0, a =4/3,b=-1/3) and ' =0, a =1, b = 0) re-
spectively. The dispersion characteristics and truncation error of the above
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schemes can be found in Refs. [1, 5]. It should be noted that for a given
order of accuracy, the compact schemes are significantly superior to their
explicit (non-compact) counterparts. The scheme of Eqn. (2) cannot be ap-
plied at a few points near each boundary where the stencil protrudes the
domain. Here, special one-sided boundary schemes, such as those described
in Refs. [5, 8] are employed.

In order to compute the residual, the derivatives of the inviscid fluxes are
obtained by first forming the fluxes at the nodes and subsequently differenti-
ating each component with the above formulas. Viscous terms are obtained
by first computing derivatives of the primitive variables. The components
of the viscous flux are then constructed at each node and differentiated by
a second application of the same scheme. Although this approach is not
as accurate as that in which a Pade-type scheme is employed directly for
the second-derivative, it is significantly cheaper to implement in curvilinear
coordinates. As previously demonstrated in Ref. [2], successive differentia-
tion yields an accurate and stable method in conjunction with the added
filtering component which is described next.

3.2. HIGH-ORDER FILTERING SCHEME

Compact-difference discretizations, like other centered schemes, are non-
dissipative and are therefore susceptible to numerical instabilities due to the
unrestricted growth of high-frequency modes. These difficulties originate
from several sources including mesh non-uniformity, approximate bound-
ary conditions and nonlinear flow features. In order to extend the present
solver to practical simulations, while retaining the improved accuracy of the
spatial compact discretization, a high-order implicit filtering technique (2, 4]
is incorporated. If a typical component of the solution vector is denoted by
¢, filtered values ¢ satisfy,

- . - a
arpi-1+ ¢ + ofdipr = Eﬁ:ogn (Pitn + di—n) (3)

Equation (3), with the proper choice of coefficients, provides an 2 Nth-order
formula on a 2N + 1 point stencil. The N + 1 coefficients, a,,aq,....,an,
are derived in terms of ay with Taylor- and Fourier-series analyses and
are found in Refs. [2, 3] along with some spectral filter responses. The ad-
justable parameter o satisfies the inequality ~0.5 < oy < 0.5, with higher
values of ay corresponding to a less dissipative filter. In multi-dimensional
problems the filter operator is applied sequentially in each coordinate di-
rection. For the near-boundary points, the filtering strategies described in
Refs. [2, 3] are employed. Up to tenth-order filter formulas have been suc-
cessfully applied to solve the Maxwell [4], Navier-Stokes [2, 9, 10, 11], and
MHD [12] equations in curvilinear geometries.




16 M. VISBAL, D. GAITONDE AND D. RIZZETTA

3.3. METRIC EVALUATION FOR CURVILINEAR DYNAMIC MESHES

The extension of high-order schemes to 3-D curvilinear meshes demands
that issues of freestream preservation and metric cancellation be carefully
addressed. These errors, which arise in finite-difference discretizations of
governing equations written in strong-conservation form, can catastrophi-
cally degrade the fidelity of standard second-order as well as higher-order
approaches [3]. In deriving the flow equations in strong-conservation form,
the following metric identities have been implicitly invoked,

Il:(ga:/‘])&’i‘("h/'])n"‘(:c/J)(=0 (4)
Iy = (&/J)e + (ny/T)g + (Gy/J)¢ =0 (5)
I3 = (&/J)e + (12/T)g + (C2/T)¢ =0 (6)
Is = (1/J)r + (&/D)e + (ne/ Ty + (Gt/T)¢ =0 (7)

In Ref. [2] it was shown that on stretched curvilinear 2-D meshes, the com-
pact scheme exhibits freestream preservation when the metrics are evalu-
ated with the same finite-difference expressions as those employed for the
fluxes. It was also demonstrated that the practice of prescribing analytic
metrics on stretched curvilinear grids can lead to unacceptable errors and
therefore should in general be avoided. The previous straightforward ap-
proach of calculating the metrics, although effective in 2-D, fails to provide
metric cancellation for general 3-D curvilinear configurations. To illustrate
this point, consider the standard metric relations:

§m/J = YnR¢ — Y¢zq
ne/d = Ycze — Y (8)
Cel/d = Yezq — Ynze

associated with the identity I;. Evaluation of the y and z derivatives in the
previous expressions using explicit or compact centered schemes does not
satisfy I, and as a result, significant grid-induced errors may appear. To
extend the high-order compact scheme to general geometries, the metric
terms are rewritten prior to discretization in the equivalent (‘conservative’)
form [13]:

&/ = (yg2)¢ — (yc2)y
ne/d = (ycz)e — (yez)¢ (9)
G/ = (yez)n — (yp2)e

Similar expressions are employed for the remaining metric terms in order to
satisfy the identities Is and I3 above. When the transformation metrics are
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recast in this manner, and the derivatives are evaluated with the same high-
order formulas employed for the fluxes, freestream preservation is again
recovered in general time-invariant 3-D curvilinear geometries [3].

For deforming and moving meshes, the identity I; must be also satisfied
to eliminate metric cancellation errors and to ensure freestream preser-
vation [6]. This metric identity is referred to in the literature [13] as the
Geometric Conservation Law ( GCL). For the time-integration methods em-
ployed in this work, the time-derivative term in Eqn. (1) is split using
chain-rule differentiation as follows:

U1 = /DU, +T(1/J)s (10)

Rather than attempting to compute the time derivative of the inverse Ja-
cobian directly from the grid coordinates at various time levels (either ana-
lytically or numerically), we simply invoke the GCL identity I to evaluate
(1/J),, ie.

(1007 = =1/ T)e + (1e/ )y + G/ T)c] (11)

where

&/J = [z (&/JI) +yr (&) T) + 2:(E:/T)]
/S = —[zr(ne/J) +yr(ny/J) + 2 (n:/J)] (12)
Ct/J = —[xT(Cm/J)+yT(Cy/J)+ZT(<z/J)]

For the case of an analytically prescribed dynamic mesh transformation, the
grid speeds (2, yr, zr) are obtained from the corresponding analytic expres-
sions. An example in which the grid speeds are known analytically corre-
sponds to the case of a maneuvering wing when the entire mesh moves in
a rigid fashion. In many practical applications involving deforming meshes
(e.g. dynamic aeroelastic simulations), the grid speeds are not known a
priori, and must therefore be approximated to the desired degree of ac-
curacy employing the evolving grid coordinates at several time levels. As
demonstrated in Ref. {6], the high-order method retains its superior accu-
racy on rapidly distorting meshes when the procedure outlined above is
incorporated for the time metrics.

3.4. TIME-INTEGRATION SCHEME

Two different time-integration approaches are incorporated in the present
family of solvers. For wave propagation applications, the equations are in-
tegrated in time with the classical fourth-order four-stage Runge-Kutta
method (RK4). The scheme is implemented in low storage form requiring
three levels of storage. For wall-bounded viscous flows, the stability con-
straint of the explicit time-marching scheme is found to render the approach
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too restrictive and inefficient. Therefore, the implicit, approximately-factored
method of Beam and Warming [14] is also incorporated and augmented
through the use of Newton-like subiterations in order to achieve second-
order time accuracy. In delta form, the scheme may be written as

T g gars® (32)] i
T 4 GiATED %%p Jptl

I 4 gans® (9] av

_¢iA7. J_1p+1 (1+¢)Up~(l+AQf)Un+¢Un_l

(13)

+UP(1/J)." + 6 (F7) +
(5,7 (ép) + 5( (I:Ip)

where 813‘/6U etc are flux Jacobians, § represents the spatial difference
operator and AU = UPt! — UP, For improved efficieny, the method incor-
porates the diagonalization procedure of Ref. [15]. In addition, nonlinear
artificial dissipation terms [16]are appended to the implicit operator to en-
hance stability. Note that while the derivatives of the flux Jacobians have
been obtained to second-order accuracy (denoted with the superscript (2) in
Eqn. (13)), those on the right hand side, i.e., in the residual, are evaluated
with the compact-difference higher-order method. In order to reduce errors
associated with these simplifications, a sub-iteration strategy is employed.
Thus, for the first subiteration, p = 1, U? = U™ and as p — oo, UP — U™,
Typically, three subiterations are applied per time step. A range of numer-
ical experiments suggests that second-order accuracy in time is adequate
for the problems considered [6].

3.5. MULTI-DOMAIN STRATEGY

Domain-decomposition techniques constitute an important component of
modern computational strategy. Due to their spatially implicit nature,
Pade-type schemes are more difficult to utilize in a multi-domain environ-
ment than explicit methods. However, a finite-size overlap can be employed
with the present compact/filtering methodology to generate a powerful ap-
proach applicable to complicated curvilinear meshes [3]. Figure 1 depicts
schematically the problem of a vortex traveling to the right in a recti-
linear path. The domain of computation is divided into two parts to be
distributed to different processors. Each sub-domain is supplemented with
several points from the adjacent sub-domain to form an overlap region,
whose details for a five-point vertical overlap are also shown in Fig. 1.
Although the overlap points are collocated they have been shown slightly
staggered for clarity. Each vertical line is denoted by its ¢-index. Data is
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exchanged between adjacent subdomains at the end of each sub-iteration of
the implicit scheme (or each stage of RKJ), as well as after each application
of the filter. The values at points 1 and 2 of Mesh 2 are set to be identically
equal to the corresponding updated values at points IL — 4 and IL — 3
of Mesh 1. Similarly, reciprocal information is transferred through points 4
and 5 of Mesh 2 which “donate” values to points IL — 1 and IL of Mesh 1.
More details on the accuracy and robustness of the present multi-domain
approach can be found in Ref. [3].

4. Results

The previous computational methodology has been successfully demon-
strated for a number of applications, including: unsteady vortical flows [2],
DNS of pulsed walljet [9] and synthetic jet actuators [17], LES of subsonic
and supersonic flows [10, 11], non-linear fluid structure interaction [18],
and benchmark problems for acoustic scattering [7] and MHD [12]. In the
interest of brevity, only a subset of these results is presented here.

4.1. MULTI-DOMAIN ACOUSTIC SCATTERING SIMULATION

The low dispersion error characteristic of compact-difference schemes is an
attractive property in the simulation of wave propagation phenomena asso-
ciated with acoustic and electromagnetic scattering. In order to demon-
strate the capability of the present numerical approach to treat acous-
tic phenomena in a multiple-domain situation, consider the scattering of
a periodic acoustic source with the two-zone overlap configuration shown
schematically in Fig. 2a.

The single-domain grid, consisting of 361 x 321 points, is split along
# = 90°, where extra &-lines are added to form a five-point overlap as in
Fig. 1. Solutions are advanced separately on each subdomain, and informa-
tion is exchanged at the overlap points in the manner previously discussed
in Section 3.5. The C6 scheme is employed for interior points along with
fourth- and fifth-order compact operators at the boundary and next-to-
boundary points respectively whereas RK/ is utilized for time-integration.
In the interior of each domain, a 10th-order filter is utilized while high-order
one-sided techniques, described in Refs. [3, 7], are invoked near boundaries.
For all filter operators, the coefficient oy = 0.45 is specified.

Figure 2b displays instantaneous pressure contours in the vicinity of
the cylinder. It is apparent that the pressure waves cross the grid interface
without producing any noticeable disruptions of the interference pattern
even though pressure waves generated by the source propagate through the
overlap region in an oblique direction to the zonal interface. A quantitative
comparison of the single-domain, multiple-domain and analytic solutions
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is given in Fig. 2c in terms of the directivity of the radiated sound at
r/D = 5. The directivity obtained with a 6th-order near-boundary filter
in the overlap region is essentially the same as the corresponding single-
domain baseline solution, and both results are in excellent agreement with
the theoretical solution. These results highlight the potential of the present
high-order methodology for domain-decomposition applications on parallel
computers. Additional details on the manner in which the high-order filter
may be applied to yield a robust farfield radiation treatment for acoustic
simulations may be found in Ref. [19].

4.2. DNS OF A PULSED WALLJET

As another example, the method has been employed to simulate the three-
dimensional transition of a forced, finite aspect-ratio, plane wall jet [9]. The
wall jet configuration considered is shown in Fig. 3a. The main parameters
governing the flow are the Reynolds number, the disturbance characteristics
at the jet nozzle, the aspect ratio of the channel, and the length of the wall.
In the present study, the Reynolds number, based on jet maximum velocity
(Umaz) and nozzle height (h), is 2150. The aspect ratio of the channel is
2b/h = 20. The mean velocity profile in the normal direction at the nozzle
exit is parabolic and corresponds to a fully-developed laminar channel flow
in that direction. The flow is forced at the nozzle exit with a frequency of
200H z and amplitude corresponding to 6% of the jet centerline velocity.

The overall flow structure is shown in Fig. 3b in terms of an iso-surface
of vorticity magnitude. The transition process begins with the formation
of shear-layer and wall vortex pairs which, due to the energetic forcing,
appear close to the nozzle exit and are phased-locked for a short distance
downstream. In the process of their spanwise evolution, the rollers are first
split into a double-helical structure, which is clearly discernable near the
sidewalls. This feature propagates toward the center while also expanding
in the radial direction. The spiral vortex branches are wound in a sense
opposite to that of the swirl direction of the vortex, but consistent with
the direction of the induced axial flow which exists within the vortex core.
This vortex branching and helical twisting spreads rapidly through self-
induction effects, and eventually reaches the symmetry plane where the
vorticity magnitude within the vortex core is drastically diminished (hence
the apparent break in the iso-surface, region “y’ in Fig. 3b). The ability of
of the present high-order solver to discern the fine-scale breakdown to tur-
bulence is shown in Fig. 3c which displays contours of vorticity magnitude
on a horizontal plane (y/h = 0.5). Additional details of the simulation, as
well as comparison with high-resolution experimental measurements may
be found in Ref. [9)].
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4.3. LES OF A SPATIALLY-EVOLVING SUPERSONIC BOUNDARY LAYER

This simulation considers a zero-pressure-gradient, flat-plate boundary layer
at a Mach number of 2.25 and Rey =~ 6000, which corresponds to the com-
putational studies of Refs. [20, 21| Details of the stretched Cartesian grids
and the initial/boundary conditions employed are given in Ref. [11]. In this
section, only results (denoted as ‘no-model’) obtained using the 10th-order
low-pass filter without the inclusion of an SGS model are considered. So-
lutions for both the Smagorinsky and dynamic subgrid-scale stress models
can be found in Ref. [11].

Figure 4a shows the spanwised-averaged, mean skin-friction coefficient.
Downstream of the transition location (which is sensitive to the numeri-
cal scheme and forcing employed), the present results compare favorably
with those of Ref. [20]. This fact is encouraging since a coarser mesh
(371 x 61 x 151) is used in the present computations with the sixth-order
compact approach. The calculations of Ref. [20] were performed on a much
finer grid (971 x 55 x 321) utilizing a fifth-order upwind-bias algorithm for
the convective terms. Reasonable agreement in terms of the mean stream-
wise velocity profile is also shown in Fig. 4b. Finally, contours of the instan-
tancous spanwise vorticity component at a height of y* ~ 1.0 are shown in
Fig. 4c and display the longitudinal structures characteristic of turbulent
wall-bounded flows.

4.4. BOUNDARY-LAYER TRANSITION OVER A FLEXIBLE PANEL

As a final example of a simulation of multi-disciplinary physics with the
present methodology, consider a transitional boundary-layer flow over a
flexible finite panel embedded in a rigid surface as shown schematically in
Fig. 5a. This problem is closely related to classic panel flutter phenomena,
as well as to viscous flow over compliant surfaces. The panel of length a
and thickness h extends over the region 0.5 < z/a < 1.5. The leading-edge
region of the plate (—0.5 < z/a < 0.0) is formed by an ellipse of half-
thickness 0.05h (i.e. aspect ratio 10). An additional challenge posed by this
aeroelastic simulation is the need to accomodate the surface deflection with
a dynamically deforming mesh. The problem has been examined in great
detail in Ref. [18] which should be consulted for details regarding boundary
condition implementation and mesh resolution studies.

For brevity, only select results obtained at M, = 0.8 and Re, = 10°
are summarized here to highlight the ability of the method to capture the
complicated unsteady phenomena under the influence of flow-induced sur-
face deformation. At low values of the dynamic pressure, a steady flow is
obtained despite the adverse pressure gradient induced by the downward
deflection of the panel. At higher dynamic pressures, however, a travelling-
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wave-flutter phenomenon is observed as summarized in Fig. 5b, c. The
instantaneous panel shapes (not shown) display a seventh-mode oscillation
with a dominant nondimensional frequency St = fa/Us = 1.52 which is
substantially higher than the fundamental frequency of the elastic plate.
The high-mode flexural deflections are observed to travel along the panel
and to reflect at the panel edges. These high-frequency fluctuations re-
sult in a pronounced acoustic radiation pattern above the vibrating plate,
shown in Fig. 5b in terms of the instantaneous pressure field. Downstream
of the flexible surface, a regular train of vortical disturbances is observed
(Fig. 5c) with characteristic wavelength and frequency compatible with
those of Tollmien-Schlichting (T-S) instability. The travelling wave flutter
appeared to originate from the coupling of the T-S waves with the panel
high-mode transverse fluctuations, and this convective instability ceases
below a critical value of Reynolds number.
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